Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-alpha-induced epithelial-mesenchymal transition of MCF-7 cells.

نویسندگان

  • R Dong
  • Q Wang
  • X L He
  • Y K Chu
  • J G Lu
  • Q J Ma
چکیده

The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-alpha (TNF-alpha). To evaluate the role of TNF-alpha in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-alpha-treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-alpha treatment. These results showed that TNF-alpha can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkappaB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkappaB by the mutant IkappaBalpha also blocked the TNF-alpha-induced upregulation of Snail promoter activity. Thus, the activation of NFkappaB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-alpha-induced EMT. ROS caused by TNF-alpha seemed to play a minor role in the TNF-alpha-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-alpha- and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells

Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

HMOX-1 inhibits TGF-β-induced epithelial-mesenchymal transition in the MCF-7 breast cancer cell line

Epithelial‑mesenchymal transition (EMT) is a key mechanism underlying metastatic breast cancer. Reactive oxygen species (ROS) play an important role in EMT. Heme oxygenase‑1 (HMOX‑1) can reduce oxidative stress. However, the effect of HMOX‑1 on the EMT process in breast cancer cells is unknown. We treated the MCF‑7 breast cancer cell line with the HMOX‑1 inducer hemin and observed that hemin in...

متن کامل

Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells.

Tumor necrosis factor (TNF)-alpha is central to the endometriotic disease process. TNF-alpha receptor signaling regulates epithelial cell secretion of inflammation and invasion mediators. Because epithelial cells are a disease-inducing component of the endometriotic lesion, we explored the response of 12Z immortalized human epithelial endometriotic cells to TNF-alpha. This report reveals the im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas

دوره 40 8  شماره 

صفحات  -

تاریخ انتشار 2007